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Abstract 
 

Problem statement 

Modern rotary screen-printing machines print fabrics with a speed of appr. 50 m/min. During 

the process, errors often occur due to fluff suspended in the air that settles on the rollers and 

blocks the pores, preventing ink from being transferred to the fabric. This creates inkless 

spots of fabric that are smaller than 1mm and barely visible to the human eye, especially in 

complex patterns. 

Due to the small dimension of errors and high speed of the printing process, the detection of 

errors is challenging and often only possible in the final quality inspection after the fabric was 

finished. This leads to a high amount of textile waste and extra time consumption for 

reworking. 

Approach 

To speed up and improve the quality inspection process on the screen printing machines, 

this work proposes the combination of cameras with artificial intelligence to carry out quality 

inspection tasks. 

Common approaches for quality inspection and error detection with image processing 

include the supervised training of classification models. However, with ever increasing 

product catalogs and with the wide variety of sizes and shapes that errors can take in rotary 

screen-printing processes, managing datasets large enough to reach a reliable accuracy 

might prove challenging to achieve generality of a model. On the other side, unsupervised 

learning models can be used for the simpler task of detecting anomalies, and with a proper 

training pipeline, the requirements for dataset sizes and training times can be significantly 

reduced. 

This work explores the use of unsupervised generative models for anomaly detection in a 

rotary screen-printing process, by using the reconstruction error, i.e. the difference between 

the input and the generated output, as a measurement to detect outliers, while keeping the 

training dataset as small possible. The tests were carried out with samples of the rotary 

screen-printing process of the company E. Schellenberg Textildruck AG, Switzerland. 

Pictures of 5 types of printed fabrics were captured with 1D and 2D cameras to train and 

validate different model architectures. 

Result and conclusion 

Our results show a ~90% detection accuracy in most of the samples on a lab scale using our 

developed generative AI model. Further research is done on the influence of the environment 

in the printing process such as vibration, speed, and light refraction. 
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Introduction 

Contemporary rotary screen-printing machines achieve a printing velocity of around 50 

meters per minute. Throughout this operation, challenges frequently arise from airborne fluff 

that settles on the rollers, obstructing the pores and impeding the ink transfer to the fabric. 

Consequently, tiny inkless areas on the fabric, measuring less than 1mm and hardly 

perceptible to the human eye, manifest, particularly within intricate patterns.  

The resources required for manual quality control are in poor proportion to the good quality of 

the finished textiles. Fundamentally, this problem cannot be excluded for printed and dyed 

knitted and woven fabrics. A defective printed textile surface of insufficient quality can only 

be detected by considerable additional effort in the running process. These errors 

necessitate 100 to 200 manhours per week to rectify.  

Quality control in textile printing companies is mainly carried out by means of classical visual 

inspection. The existing high error rate of visual inspection of more than 65% provokes a 

considerable amount of rejects and simultaneously entails a high use of resources. At the 

same time, costs are rising significantly and customer satisfaction is steadily declining. 

At present the market offers several automatic quality inspection systems for various 

surfaces, such as paper, metal and also for textiles. Nevertheless, the printing process is a 

particularly high challenge due to the variation of patterns, the process speed and other 

parameters (vibration, light conditions, dust etc.). Two types of inspection systems can be 

distinguished:  

Table 1 investigated errors in printed textiles with a size of 1 - 4 mm 
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 Systems with error classification 

 Systems with anomaly detection 

Quality inspection systems with error classification are dependent on a huge number of 

existing images of errors. The user must classify all upcoming errors to train the system, 

which results in high cost for the training phase for each new pattern. 

Whereas an inspection system with anomaly detection refers to a at least one master image 

of a correct printed textile and compares the master with the recorded images of the running 

process. Consequently, unlike the error classification, a large amount of error images is not 

necessary. Fundamentally, an anomaly can be called rare events, deviations or outliers. 

Existing data sets that do not match the main distribution are declared as such. According to 

Barnett and Lewis, the following definition can be formulated: 

"...an observation (or subset of observations) that appears to be inconsistent with the rest of 

the data set." [Fre95] 

Within this work anomaly detection was chosen over classification because the situation in 

the production environment required to know only if errors were happening, not which ones. 

The aim of this work is to develop a neural network for the detection of anomalies in 

defectively printed woven and knitted fabrics to enable automated quality monitoring using an 

industrial camera in the textile industry. Here, an autoencoder is used, which can be defined 

as an artificial neural network. Validation and testing of the algorithm are performed using 

various defective example fabrics from a rotary printing process. This is followed by 

assessment and evaluation using predefined assessment metrics. 

State of the art 

Historically in manufacturing, the majority of anomaly detection tasks are performed by 

humans, which suffers from disadvantages such as human fatigue and operational costs. 

Hence, the primary objective of automated anomaly detection is to minimize human 

intervention, enhance productivity, and improve product quality. 

Based on the needs, many automated optical quality control systems for textiles have been 

developed [3-5]. Commercially available systems are typically rule-based and limited to 

simple, unpatterned textiles [6-9]. Some rule-based systems able to handle complex textiles 

(e.g., multicolored textiles or single-color jacquard fabrics) [7, 10] must be laboriously 

reconfigured for each item. Broadly speaking, existing anomaly detection systems in the 

market still exhibit limitations in generalization, usability, performance, computational cost, 

and interpretability. Combined with the complex operability of such systems, this results in an 

obstacle to the economical use of these systems in SMEs [1, 11]. 

Prior to the advent of deep learning, traditional anomaly detection algorithms such as 

statistical and structural methods exist [12], which usually require a great deal of priori 

knowledge, are computationally expensive, and often assume a specific data distribution, 

thus perform poorly on unseen data. Such image anomaly detection technique struggled to 

meet the standards of industrial manufacturing. In the present day, deep learning techniques 

have delivered commendable outcomes [2]. 

Current anomaly detection algorithms in the scientific field [13-15] often prioritize detection 

accuracy while overlooking the model's size and efficiency, which leads to high 
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computational costs and restricts the application in enterprise production. Therefore, it is 

necessary to design light weight but efficient anomaly detection models. 

Based on industrial requirements, an approach was designed using Autoencoder, which 

offers several advantages, including its ability to achieve effective training with a limited 

number of defect-free samples, its enhanced robustness and precision in comparison to 

general inspection methods, and its capacity to handle various, complex textile fabrics. By 

operating in a lower-dimensional feature space, Autoencoders can significantly reduce 

computational costs and memory requirements, making them suitable for real-time or large-

scale anomaly detection applications. Furthermore, Autoencoders are robust as they are 

capable of handling noisy or incomplete data, which is often encountered in real-world 

scenarios. 

Experimental 

To first decide what machine learning methods for anomaly detection were most adequate 

for the problem, a Harvey Balls table was used to compare Supervised Anomaly detection, 

Semisupervised anomaly detection and, lastly, unsupervised anomaly detection. The 

comparison can be seen in table 1, where the completely dark circles account for one point, 

the half-painted circles for half point, and the white circles with the black contour for zero 

points. The result of the comparison of the required data complexity, robustness, accuracy, 

variability, and optimization effort, shows that the unsupervized anomaly detection is the best 

suited for the approach. 
 

Table 2 Harvey Balls table to compare machine learning-based anomaly detection methods. 

 Supervised 

anomaly detection 

Semisupervised 

anomaly detection 

Unsupervised 

anomaly detection 

Required data 

complexity 

Robustness 

Accuracy 

Variability 

Optimization 

effort 

Total 1 2 3 
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Within the realm of unsupervised learning, generative approaches, such as Autoencoders 

(AE) [16-18] and Generative Adversarial Networks (GAN) [19-21], have been used in the 

past for anomaly detection in many application areas such as manufacturing, medical 

imaging and cyber-security. Anomalies are detected by calculating the reconstruction error, 

i.e. the difference between the generated output with the input, and measuring its distance to 

a determined threshold, which is usually a factor of the standard deviation [16]. 

 

In this work, a Convolutional AE (CAE) architecture with 12 convolutional layers is proposed 

and tested to achieve an accuracy of over 90% for detecting anomalies on printed textiles. 

To choose the architecture, a Simple Auto Encoder (SAE) and two CAE [22], with 12 and 14 

convolutional layers respectively, were tested against each other for accuracy. The SAE 

architecture was discarded because it was not able to properly reconstruct the input images 

after the training. Out of the 2 CAE architectures, the one with 12 convolutional layers was 

chosen because it trained faster and did not show difference in accuracy with respect to the 

architecture with 14 convolutional layers. A graphic representation of the chosen architecture 

can be seen in Figure 1. 

Figure 1: The chosen architecture with 12 convolutional layers, 6 in the encoder and 6 in the 
decoder, for the Convolutional Autoencoder. 
 

Table 3 and Table 5 show in detail the properties of the encoder and the decoder 

respectively. While Table 4 shows the properties of the feature space. 

 

Table 3 Properties of the convolutional layers of the encoder. 

 
Size Kernel Padding MaxPool 

Batch 

Normalisierung 
LeakyRelu 

Input 256x256x1 - - - - - 

Conv1 256x256x2 (3,3) Yes - Yes Yes 

Conv2 128x128x4 (3,3) Yes Yes Yes Yes 

Conv3 64x64x6 (3,3) Yes Yes Yes Yes 

Conv4 32x32x8 (2,2) Yes Yes Yes Yes 
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Conv5 16x16x16 (2,2) Yes Yes Yes Yes 

Conv6 16x16x32 (2,2) Yes - Yes Yes 

 

Table 4 Properties of the CAE's latent space. 

 Size Activation function 

Flatten 8192 - 

Dense layer 8192 Sigmoid 

Bottleneck (Dense) Variable numer of neurons - 

Dense layer 8192 Sigmoid 

Resize 16x16x32 - 

 

Table 5 Properties of the transpose convolutional layers of the decoder. 

 
Size Kernel Padding Stride 

Batch 

Normalisierung 
LeakyRelu 

ConvT1 256x256x1 - - - - - 

ConvT2 256x256x2 (2,2) Yes - - Yes 

ConvT3 128x128x4 (3,3) Yes (2,2) - Yes 

ConvT4 64x64x6 (2,2) Yes (2,2) - Yes 

ConvT5 32x32x8 (3,3) Yes (2,2) - Yes 

ConvT6 16x16x16 (3,3) Yes (2,2) - Yes 

Output 256x256x1 (2,2) Yes - - Sigmoid(x) 

 

The training data was generated by taking grayscale pictures of five different patterned 

fabrics provided by E. Schellenberg Textildruck AG. These images had a resolution of 

2048x1088 pixels and covered an area of 43.4 by 32.1 cm. To increase the proportion of the 

errors on the images and to augment the data to train the CAE, the images were segmented 

to windows of 512x512 pixels and were generated out of a sliding window of ∆=64 pixels, like 

shown in Figure 2. The 512x512 segments were then resized to 256x256 to fit the input layer 

of the CAE. 

 

For each fabric, the segmented images were grouped into three datasets. The first dataset, 

used for training, only included images without printing errors. The second dataset, used for 

validation, was also limited to images without errors and had 40% of the images without 

errors. The third dataset solely included images with printing errors and was used as test 

dataset. 
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In order to further improve the generic CAE architecture that can be applied to as many 

printed patterns as possible, a grid search for optimal hyperparameters (HP) of the CAE was 

carried out. In these experiments, 4 HP were optimized: learning rate (LR), the dimension of 

the CAE’s bottleneck (D), the dropout, and the training epochs. Table 6 shows the value 

combinations for each parameter. 

 

Table 6 Hyperparameter values. 

Learning rate 0.001 0.0001 0.00001 - 

Bottleneck’s 

dimension  

4000 900 600 300 

Dropout 0 0.5 - - 

Epochs 50 100 - - 

 

To test the accuracy of each training iteration, a threshold that separates samples without 

printing errors from those with errors was defined by calculating the normal distribution of the 

reconstruction’s Mean Squared Error (MSE) of images of the training dataset, and by setting 

the threshold to 3 times the standard deviation (σ), a value that was chosen experimentally 

when comparing it to thresholds of 1σ and 2σ. Hence, images that are reconstructed with an 

MSE larger than 3σ will be considered anomalies. 

 

Results 

The metrics chosen to measure the performance of the CAE are recall, precision, and 

accuracy, and all three confirmed that a generic CAE architecture is possible with the 

combination of HP LR=0.0001, D=4000, Dropout=0, Epochs=100. Table 7 shows what HP 

values performed better for each fabric. 

Figure 2 Picture of the third patterned fabric with a watermark of the window and its 
sliding stride. 
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With the selected HP combination, the lowest values of the metrics are recall=93.8%, 

precision=98.8%, and accuracy=93.6%, reaching the expectation of 90%. 
 

Table 7 Ranking of the hyperparameter combinations, where 1 marks the parameter value 
that yielded the best metrics for a specific fabric. 

Hyperparameter Fabric 1 Fabric 2 Fabric 3 Fabric 4 Fabric 5 Sum Rank 

LR=0.001 0 0 0 0 0 0 3 

LR=0.0001 1 0 1 0 1 3 1 

LR=0.00001 0 1 0 1 0 2 2 

D=4000 1 1 0 0 1 3 1 

D=900 0 0 1 0 0 1 2 

D=600 0 0 0 1 0 1 2 

D=300 0 0 0 0 0 0 3 

Dropout=0 1 1 0 1 0 3 1 

Dropout= 0.5 0 0 1 0 1 2 2 

Epochs=50 0 0 1 0 1 2 2 

Epochs=100 1 1 0 1 0 3 1 
 
 

Discussion 

In this study, an approach was presented that leverages a CAE architecture for the task of 

anomaly detection in images of printed fabrics. The methodology demonstrates promising 

results in identifying anomalies within image datasets, but it is essential to acknowledge its 

limitations and room for improvement. 

Our approach relies heavily on the availability of data for training the CAE. It necessitates a 

significant volume of pristine, anomaly-free images. This requirement underscores the 

importance of ensuring flawless production runs, particularly in the initial five meters of the 

process, to secure the foundational dataset necessary for training the model. 

A crucial aspect of anomaly detection in images is the ability to not only identify anomalies 

but also to localize them within the image. The approach within this work does not explicitly 

provide information about the spatial location of anomalies within the image. This is a critical 

drawback, as it limits the utility of the model in applications where pinpointing the precise 

location of anomalies is vital, such as medical imaging or quality control in manufacturing. 

Researchers may consider integrating techniques like attention mechanisms or object 

detection methods to enhance anomaly localization capabilities. Other options to achieve 

localization are locating anomalies based on the joint probabilities of each of the Gaussian 

mixture components [23], or, for instance, improving the loss function by introducing a tight 

regularization [24], so that the loss function during training is more fluctuated, compared to 

the original CAE model that evaluates only reconstruction errors. Furthermore, a larger 
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anomaly detection dataset with pixel-level annotations can be used to train a location-aware 

model. [2] 

 

Summary 

The text discusses challenges faced in contemporary rotary screen-printing machines that 

stem from airborne fluff settling on rollers, obstructing ink transfer to fabric and resulting in 

small, imperceptible inkless areas, particularly in intricate patterns. Manual quality control is 

impractical due to the substantial resources required, especially for high-quality textiles. 

To address this issue, the work proposes a CAE with 12 convolutional layers, achieving an 

accuracy of over 90% for detecting anomalies in printed textiles. However, future work 

should focus on enhancing anomaly localization and reducing the model's dependency on 

large training datasets, aiming to make anomaly detection even more practical and efficient 

in textile manufacturing. 
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